Antimicrobial peptides in mucosal secretions: the importance of local secretions in mitigating infection.
نویسندگان
چکیده
The antimicrobial activity of the collective molecules comprising human milk reflects an evolutionarily successful paradigm for preventing and limiting microbial infection. Understanding the molecules that participate in this process and how they work can yield insight into potentially new antimicrobial therapies. Upon proteolytic processing, antimicrobial peptides can be derived from milk proteins, such as lactoferrin, casein, and lysozyme. Similarly, using the HIV-1 gp41 protein template, we have demonstrated that the 28-residue C-terminus, when produced as an independent peptide, exhibits selective toxicity for bacteria over eukaryotic cells. Upon optimizing this sequence for cationic charge and hydrophobic character presented as a alpha-helical structure, we show improved capability of the parent LLP1 sequence to selectively kill bacteria in the host environment and that this activity is increased by the inclusion of Trp residues on the hydrophobic face. We report that it is possible to (i) design de novo antimicrobial peptides that demonstrate optimal antimicrobial activity with minimal inflammatory activity and (ii) design antimicrobial peptides to function in a defined environment. In the end, we describe a de novo designed antimicrobial peptide, WLBU2, which is selectively toxic to microbial pathogens in complex environments and does not stimulate a significant immunomodulatory response. In spite of these properties, WLBU2 activity against Pseudomonas aeruginosa in human milk is inferior to the host peptide LL37 with regard to antimicrobial potency. These studies demonstrate that antimicrobial peptides can be engineered for greater potency in one medium but may not be optimal for working in a different medium such as human milk.
منابع مشابه
Symposium: Innate Immunity and Human Milk Antimicrobial Peptides in Mucosal Secretions: The Importance of Local Secretions in Mitigating Infection*
The antimicrobial activity of the collective molecules comprising human milk reflects an evolutionarily successful paradigm for preventing and limiting microbial infection. Understanding the molecules that participate in this process and how they work can yield insight into potentially new antimicrobial therapies. Upon proteolytic processing, antimicrobial peptides can be derived from milk prot...
متن کاملHost defense effector molecules in mucosal secretions.
Mucosal secretions contain a range of defense effector molecules including antimicrobial peptides and proteinase inhibitors. These molecules play a central role in host defense against infection, and in a variety of immune and inflammatory reactions. The aim of this study was to analyze the levels of neutrophil defensins, the cathelicidin hCAP-18/LL-37, and the proteinase inhibitors secretory l...
متن کاملمعرفی پپتید ضدمیکروبی جدید با نام Buforin–K از ترشحات پوستی وزغ کویری بومی یزد
Introduction: Today, research in the field of antimicrobial peptides is active. Thus, the aim of this study is to purify and determine biochemical properties (especially antimicrobial effect) of new antimicrobial peptides from skin secretions of bufo kavirensis. Methods: This is a descriptive study. The skin secretions of bufo was purified by biochemical manners and antimicrobial effects was ...
متن کاملInterleukin-17A (IL-17A) and IL-17F Are Critical for Antimicrobial Peptide Production and Clearance of Staphylococcus aureus Nasal Colonization.
Approximately 20% of the population is persistently colonized by Staphylococcus aureus in the nares. Th17-like immune responses mediated by the interleukin-17 (IL-17) family of cytokines and neutrophils are becoming recognized as relevant host defense mechanisms for resolution of S. aureus mucocutaneous infections. Since antimicrobial peptides are regulated by the IL-17 cytokines, we sought to ...
متن کاملInnate antimicrobial activity of nasal secretions.
Minimally manipulated nasal secretions, an accessible form of airway surface fluid, were tested against indigenous and added bacteria by using CFU assays. Antimicrobial activity was found to vary between donors and with different target bacteria and was markedly diminished by dilution of the airway secretions. Donor-to-donor differences in electrophoresis patterns of nasal secretions in sodium ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of nutrition
دوره 135 5 شماره
صفحات -
تاریخ انتشار 2005